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A Signal Processing Approach
to Symmetry Detection

Yosi Keller and Yoel Shkolnisky

Abstract—We present an algorithm that detects rotational
and reflectional symmetries of two-dimensional objects. Both
symmetry types are effectively detected and analyzed using the
angular correlation (AC), which measures the correlation between
images in the angular direction. The AC is accurately computed
using the pseudopolar Fourier transform, which rapidly computes
the Fourier transform of an image on a near-polar grid. We
prove that the AC of symmetric images is a periodic signal whose
frequency is related to the order of the symmetry. This frequency
is recovered via spectrum estimation, which is a proven technique
in signal processing with a variety of efficient solutions. We also
provide a novel approach for finding the center of symmetry and
demonstrate the applicability of our scheme to the analysis of real
images.

I. INTRODUCTION

SYMMETRY detection and analysis is a fundamental task
in computer vision. Naturally, most man-made and biolog-

ical objects exhibit some extent of symmetry. Consider, for ex-
ample, man-made objects, such as airplanes and houses, or na-
ture-made objects, like fish and insects. Thus, symmetry is an
effective cue for visual recognition. This approach is supported
by experimental analysis of perceptual grouping and attention
in the human visual system [1].

The two most common types of symmetries are rotational
and reflectional. An object is said to have rotational symmetry
of order if it is invariant under rotations of ,

. An object is said to have reflectional symmetry if
it is invariant under a reflection transformation about some line.
Hence, symmetry (of both kinds) is an angular property, and
as images are given on Cartesian grids, the polar nature of the
problem poses computational difficulties.

The algorithm presented in this paper uses the pseudopolar
Fourier transform (PPFT) [2] to analyze the angular proper-
ties of images in the Fourier domain. This approach has sev-
eral advantages. First, a polar fast Fourier transform (FFT) is
used to generate a polar representation of the image in an alge-
braically accurate way. Second, by analyzing the magnitude of
the polar FFT, we avoid the need to compute the center of rota-
tion, as the magnitude of the FFT is invariant to translations and
commutative to rotations. Third, we reformulate the problem
of estimating the order of symmetry as the analysis of a peri-
odic one-dimensional (1-D) signal embedded in noise. This is
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a well-known problem in signal processing with well-tested al-
gorithmic solutions.

The paper is organized as follows. Section II presents pre-
vious works related to symmetry detection. Section III provides
a mathematical presentation of symmetries as well as the an-
gular properties of the Fourier domain. Section IV presents the
angular correlation (AC) as a tool for analyzing symmetries,
while discretization and implementation issues are discussed in
Section V. Finally, Sections VI and VII present experimental re-
sults and concluding remarks, respectively.

II. PREVIOUS WORK

Symmetry is thoroughly studied in the literature from the-
oretical, algorithmic, and applicative perspectives. Theoretical
treatment of symmetry can be found in [9] and [17]. The algo-
rithmic approaches to symmetry detection can be divided into
several categories based on their characteristics. The first char-
acteristic of a symmetry detection algorithm is whether it con-
siders symmetry as a binary or continuous feature, which mea-
sures the amount of symmetry. A second characteristic is the
type of symmetry detected by the algorithm. Most algorithms
detect either rotational or reflectional symmetry, but not both.
A third characteristic is the assumptions that are made on the
image. For example, whether the algorithm assumes that the
image is symmetric or detects it, or whether the algorithm as-
sumes that the symmetry center is located at the center of the
image. A fourth characteristic is whether the algorithm operates
in the image domain or transforms the problem into a different
domain, such as the Fourier domain. A fifth characteristic is the
robustness of the algorithm to noise and its ability to operate on
real-life nonsynthetic images.

We start by describing local symmetry measures. A low-level,
context-free operator for detecting points of interest within an
image, which relies on the assumption that context free atten-
tion is directed by symmetry, is presented in [13]. The suggested
symmetry operator constructs the symmetry map of the image
by assigning a symmetry magnitude and symmetry orientation
to each pixel. This map is an edge map where the magnitude
and orientation of each edge depend on the symmetry associ-
ated with each of its pixels. The proposed operator allows one to
process different symmetry scales, enabling it to be used in mul-
tiresolution schemes. The proposed operator is demonstrated to
be effective in detecting points of interest in natural images.

An algorithm for detecting areas with high local reflectional
symmetry that is based on a local symmetry operator is pre-
sented in [6]. It defines a two-dimensional (2-D) reflectional
symmetry measure as a function of four parameters , and
, where and are the center of the examined area, is its
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radius, and is the angle of the reflection axis. Examining all
possible values of and is computationally prohibitive;
therefore, the algorithm formulates the problem as a global op-
timization problem and uses a probabilistic genetic algorithm to
find the optimal solution efficiently.

As noted previously, symmetry can be considered either as a
binary or as a continuous feature. A symmetry distance, which
measures the amount of symmetry in an object, is presented in
[18]. For an object, given by a sequence of points, the symmetry
distance is defined as the minimum distance in which we need
to move the points of the original object in order to obtain a
symmetric object. This also defines the symmetry transform of
an object as the symmetric object that is closest to the given
one. Algorithms that compute the symmetry transform of an
object with respect to rotational and reflectional symmetries and
handle the problem of selecting points to represent 2-D objects
are described in [18]. These algorithms require finding point
correspondences, which is generally difficult, and perform an
exhaustive search over all potential symmetry axes, which is
computationally expensive.

Pattern-analysis approaches to symmetry detection define a
pixelwise feature vector, which encodes the geometrical struc-
ture around each pixel and acts as a local symmetry measure.
Then, pixels with similar symmetry measures are clustered to-
gether. Such a scheme that detects local, global, and skewed
symmetries is described by [15], where an affine invariant fea-
ture vector is computed over a set of interest points. Another
pattern-analysis approach is introduced in [11], where the fea-
ture vector field is based on the location, orientation, and magni-
tude of the edge gradients. Local features in the form of Taylor
coefficients of the field are computed and a hashing algorithm
is then applied to detect pairs of points with symmetric fields.
A voting scheme is used to robustly identify the location of the
symmetry axes.

The works of [4] and [8] are of particular relevance to our ap-
proach, as these schemes operate in the Fourier domain, are able
to efficiently detect large symmetric objects, and are consid-
ered state of the art; [4] analyzes the symmetries of real objects
by computing the analytic Fourier–Mellin transform (AFMT).
The input image is interpolated on a polar grid in the spatial
domain before computing the FFT, resulting in a polar Fourier
representation. Yet, this approach comes at the cost of losing the
shift invariance of the Fourier magnitudes and, thus, can only be
applied to images with known symmetry centers. [8] provides
an elegant approach to analyzing the angular properties of an
image, without computing its polar discrete Fourier transform
(DFT). An angular histogram is computed by detecting and bin-
ning the pointwise zero crossings of the difference of the Fourier
magnitude in Cartesian coordinates along rays. The histogram’s
maximum corresponds to the direction of the zero crossing. For
real images, most of the zero crossings detected in the Fourier
domain are spurious and the binning operation might result in
erroneous maximum.

Our approach differs from the above-mentioned schemes in
two attributes. First, it uses the PPFT to compute an accurate,
translation-invariant polar Fourier representation of the input
image. Second, it uses the MUSIC [10] scheme to robustly esti-
mate the order of symmetry. Using the polar representation we

define the AC, which measures the correlation between images
in the angular direction. We rigorously show that the AC of a
symmetric image is a periodic signal whose number of periods
corresponds to the order of symmetry. For real images, even the
AC computed by our scheme (which is algebraically accurate)
is noisy, due to nonperfect symmetries and the nonsymmetric
backgrounds (note the Pentagon example in Section V). Hence,
we employ a robust, state-of-the-art spectrum estimation tech-
nique that enables to analyze real images without preprocessing.
Our scheme can also be used to detect multiple symmetric ob-
jects within the analyzed image (similar to local methods [6],
[5], and [15]), by dividing the input image to sub-images and
processing each of them separately.

In terms of pattern analysis, our scheme assumes the exis-
tence of a global periodic pattern which is best detected by
spectral methods (spectrum estimation). This occurs in images
containing large symmetric objects, where we are able to ro-
bustly identify high-order symmetries. In contrast, local pattern-
analysis schemes [11], [15] are better at detecting cluttered,
small symmetric objects, which do not correspond to global pe-
riodic patterns.

III. MATHEMATICAL PRELIMINARIES

A. Types of Symmetries

Definition (Rotational Symmetry): A function
is rotationally symmetric of order around the origin if

(III.1)

where , and
is a rotation transformation given by

(III.2)

In operator notation, (III.1) is written as , while
in polar coordinates, it is given by

(III.3)

where .
Definition III.2 (Reflectional Symmetry): A function

is reflectionally symmetric with respect to
the vector if

(III.4)

where

(III.5)

is the tilt angle of the reflection axis of . An image has
reflectional symmetry of order if there are angles that
satisfy (III.4).
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In polar coordinates (III.4) is written as

(III.6)

where is the angle of the reflection axis. If an image has
rotational symmetry of order , then it either has reflectional
symmetry of order or has no reflectional symmetry at all [14],
[17]. If an image has both rotational and reflectional symmetry,
then the axes of reflectional symmetry are given by

(III.7)

where is the angle of one of the reflection axes, and are
the angles of rotational symmetry.

A function is rotationally symmetric with center ,
if is rotationally symmetric around the
origin. Similarly, is reflectionally symmetric with respect
to a vector that passes through if

is reflectionally symmetric with respect to
the vector as given by Definition III.2.

B. Properties of the Fourier Transform

The Fourier transform is the main tool in deriving and ana-
lyzing the proposed scheme. In this section we present the defi-
nition of the Fourier transform as well as some of its properties
that are required for the derivation of the algorithm.

Let be a function whose modulus is square
integrable on . The 2-D Fourier transform of , denoted

or , is given by

(III.8)

where .
The following lemmas are well known and stated without

proofs.
Lemma III.3: If is rotationally symmetric around the origin

with order , then is also rotationally symmetric around the
origin with the same order. Explicitly

(III.9)

Lemma III.4: If is reflectionally symmetric with respect
to the vector , then is also reflectionally sym-
metric with respect to the same vector. Explicitly

(III.10)

C. Pseudopolar Fourier Transform

Given an image of size , its 2-D Fourier transform,
denoted as , is given by

(III.11)

We assume for simplicity that the image has equal di-
mensions in the and directions and that is even. If

and are sampled on the Cartesian grid
,

then (III.11) has the form

(III.12)

, which is usually referred to as
the 2-D DFT of the image . The parameter sets
the frequency resolution of the DFT. It is well known that the
DFT of , given by (III.12), can be computed with algorithms
having complexity .

For some applications, it is desirable to compute the Fourier
transform of on a polar grid. Formally, we want to sample the
Fourier transform in (III.11) on the grid

(III.13)

for which the Fourier transform in (III.11) has the form

(III.14)

The grid given by (III.13) is equally spaced both in the radial
and angular directions

(III.15)

(III.16)

The PPFT defined below produces nonuniform polar samples
of . It is accurate and can be computed using a fast algorithm.
Thus, for practical implementations, we use the pseudopolar
grid instead of the polar one.

The PPFT evaluates the 2-D Fourier transform of an image on
the pseudopolar grid, which approximates the polar grid. For-
mally, the pseudopolar grid is given by the set of samples

(III.17)

where

(III.18)

(III.19)
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Fig. 1. Pseudopolar grid. (a) and (b) are the pseudopolar sectors P and P ,
respectively. (c) The pseudopolar gridP = P [P . (a) The pseudopolar sector
P . (b) The pseudopolar sector P . (c) The pseudopolar grid. (Color version
available online at http://ieeexplore.ieee.org.)

The pseudopolar grid is illustrated in Fig. 1(c). As can be
seen from Fig. 1(a) and (b), serves as a “pseudoradius” and

serves as a “pseudoangle.” The resolution of the pseudopolar
grid is in the angular direction and in
the radial direction. Using a polar coordinate representation, the
pseudopolar grid is given by

(III.20)

(III.21)

(III.22)

where and . We define
the PPFT as the samples of the Fourier transform , given in
(III.11), on the pseudopolar grid , given by (III.17). Formally,
the PPFT is a linear transformation, which is
defined for and , as

(III.23)

(III.24)

where is given by (III.11).
As we can see in Fig. 1(c), for each fixed angle , the sam-

ples of the pseudopolar grid are equally spaced in the radial di-
rection. However, this spacing is different for different angles.
Also, the grid is not equally spaced in the angular direction, but
has equally spaced slopes. Formally

(III.25)

(III.26)

where and are given in (III.22) Two important properties
of the PPFT are that it is invertible and that both the forward
and inverse PPFTs can be implemented using fast algorithms.
Moreover, their implementations require only the application
of 1-D equispaced FFTs. In particular, the algorithms do not
require re-gridding or interpolation.

The algorithm for computing the PPFT is based on the
fractional Fourier transform (FRFT). The FRFT [16], with its

generalization given by the Chirp Z-transform [12], is a fast
algorithm that evaluates the Fourier transform of

a sequence on any set of equally spaced points on the unit
circle. By using the FRFT we compute the PPFT , given in
(III.23), as follows.

Algorithm 1 Computing the pseudopolar Fourier transform

1: Zero pad the image to size (along
the direction).

2: Apply the 1-D Fourier transform to each column of
(along the direction).

3: Apply the FRFT to each row (in the direction) with
, where is the index of the row.

The algorithm that computes is similar. The complexity
of computing of an image is . Since
the complexity of computing is also the total
complexity of computing the PPFT is .

IV. CONTINUOUS FORMULATION

A. Computing the Order of Symmetry of Centered Symmetries

For a function , given in polar coordinates, we
define its expectation with respect to over the interval
as

Due to numerical problems arising in its computation, according
to [3], we use the following expression:

(IV.1)

with . We define the standard deviation of with respect
to as

(IV.2)

Definition IV.1: Let . The AC, denoted , of
and is given by

(IV.3)

From the definition, . It is clear that if is
rotationally symmetric of order (Definition III.1), then
and are periodic with periods over . An example
of the AC of a symmetric image is given in Fig. 2.

Lemma IV.2: If is rotationally symmetric of order , as
given by Definition III.1, then , given by (IV.3), is peri-
odic with period . Moreover,

.
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Fig. 2. AC function g (�) of a symmetric image. g (�) contains three pe-
riods corresponding to the order of rotational symmetry in (a). (Color version
available online at http://ieeexplore.ieee.org.)

Proof: From (III.3) and the fact that we
get for

Since and is periodic, it is clear that
.

Lemma IV.2 suggests that it is possible to compute the order
of symmetry of by finding the number of periods of in

. The symmetry axes for reflectional symmetry are then
given by

where is the tilt angle of one of the axes.

B. Finding the Tilt Angle of a Reflection Axis

The following lemma shows how to compute by relating
it to the registration of two images.

Lemma IV.3: The tilt angle of one of the reflection axes of
an image , denoted , can be computed by registering

to
Proof: By (III.6), we have

Hence, and are related by a rotation angle of
.

Lemma IV.3 is exemplified by Fig. 3. Next, we show that
rotated images can be registered by a variant of the AC given in
Definition IV.1.

Lemma IV.4: Let , and define

(IV.4)

If is a rotated replica of , that is ,
then .

Proof: Since we have that
. Substituting into (IV.4),

we get (IV.5), shown at the bottom of the page, and
.

Next, we apply Lemma IV.4 to the particular problem of re-
covering the symmetry axis’ angle.

Theorem IV.5: Given a reflectionally symmetric image
, the angle of its reflection axis, denoted , can

be estimated from with and
. In this case, is denoted as

.
Proof: Let and .

Using Lemma IV.3 , and are related by a rotation of
This angle is recovered by applying the registration scheme

suggested in Lemma IV.4; moreover, .
The application of Theorem IV.5 to the magnitudes of the

Fourier transforms of the images to register allows to recover
regardless of the relative translation between the images.

Theorem IV.6: The AC between the magnitudes of the
Fourier transforms of the images to register shows two maxima
over . The maxima are apart and can be mapped into
the interval . The implementation requires the rotation
of the input images by an arbitrary predefined angle .

Proof: From the conjugate symmetry of the Fourier trans-
form, we get . Hence, the equation

(IV.5) has at least two solutions. The first so-
lution is , where is the relative rotation between
the images. The second, which results from the conjugate sym-
metry , is .
We combine the two solutions to improve the robustness and ac-
curacy of the estimation by defining

(IV.6)

and computing

(IV.5)
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Fig. 3. Recovering the tilt angle of one of the reflection axes. (a) The image has a reflectional symmetry axis tilted by � . (b) The image is flipped upside down
and the axis is tilted by an angle�� . Note that there are three equivalent solutions for the registration of (b) to (a). (c) The reflectional AC g (�) computed
by (a) and (b). The three maxima corresponding to the three solutions are evident. (d) Folding the three periods gives the basic interval g (�), whose maximum
corresponds to the angle � . (Color version available online at http://ieeexplore.ieee.org.)

For reflectionally symmetric images,
. Thus, if and is com-

puted by flipping upside down, then

and for every . This means that, in this case,
it is impossible to recover from . Hence, the
image has to be flipped around an axis which is not a symmetry
axis, and so instead of registering to , we reg-
ister to , where is an arbitrary chosen
angle.

Hence, can be recovered by registering to
using the AC, where is computed by flipping
upside down. The robustness is improved by utilizing our
knowledge of the order of symmetry . The registration
problem in Theorem IV.5 has solutions (see Fig. 3), and,
thus, has periods over , that is

We denote by the reflectional AC, as it measures
the AC of an image with its reflected replica.

Similar to (IV.6), we utilize the periodicity by folding
from to

(IV.7)

and looking for

Due to the conjugate symmetry mentioned above, both and
are possible solutions, corresponding to rotations of

and , respectively. If is even, either of them can be
used, as both and are valid tilt angles of a sym-
metry axis. If is odd, the ambiguity is resolved by rotating
the image according to both angles ( and , com-
puting the phase correlation [7], and choosing the one with the
highest correlation peak. Finally, by Theorem IV.6 we have that

and is given by

(IV.8)

As any image can be registered to its rotated replica, we get
both for nonsymmetric images and for images with a

single reflectional symmetry axis. Thus, we analyze
to see whether it has a dominant maximum. Consider, for ex-
ample, Figs. 5 and 7: In both cases, the function has a
single period and the difference being the number of periods, as

, has no periods in Fig. 7 compared to one in Fig. 5.

C. Computing the Order of Symmetry of Noncentered
Symmetries

In this section, we extend the approach suggested in Sec-
tion IV-A to handle noncentered symmetries. By using Lemmas
III.3 and III.4, and the translation invariance of the Fourier trans-
form’s magnitude, we obtain Lemma IV.7, which enables to
convert noncentered symmetric functions into functions that are
symmetric around the origin.

Lemma IV.7: Let be a rotationally symmetric function
of order around . Then, , where is the 2-D
Fourier transform of , is rotationally symmetric of order
around the origin.

Lemma IV.7 suggests the processing of noncentered sym-
metries by applying the algorithm from Section IV.A to the
magnitude of the Fourier transform of the input function. This
gives the order of symmetry and the reflection axes

. Therefore, the analog of (IV.3) for noncen-
tered functions is defined as

(IV.9)

and the algorithm of Section IV.A is applied to .
As is real, is conjugate symmetric

. Thus, symmetry axes in can result
from either or symmetry axes in . This ambiguity
is resolved by rotating by both and

and comparing the phase correla-
tion peaks [7]. Note that is necessarily a valid solution for
the rotation for both and symmetry axes.

D. Computing the Center of Symmetry

After computing the order of symmetry , we recover the
center of symmetry . Our approach is based on the
observation that a symmetric image and its replica, rotated
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by , are related by a pure translation. This translation
maps to itself.

This applies to both reflectional and rotational symmetries
as a reflectionally symmetric image is also rotationally sym-
metric [14]. We compute a transformation that maps to
itself by rotating by ( is already known at
this point) and recovering the residual translation . is given
by and as is mapped to itself is the
eigenfunction of corresponding to the eigenvalue . In
practice, and are represented as matrices and is an
eigenvector. This is summarized in Algorithm 2.

Algorithm 2 Computing the center of symmetry

1: Rotate the input image by and denote
the rotated image as .

2: Compute the corresponding rotation matrix .

3: Recover the translation between and using
phase correlation [7].

4: Compute .

5: is an eigenvector of corresponding to the
eigenvalue .

V. SCHEME DISCRETIZATION

Discretizing the approach suggested in Section IV poses sev-
eral difficulties.

1) The continuous formulation is based on a polar represen-
tation of the Fourier transform of the input function. In
order to use this approach in discrete settings, we need a
fast and accurate way to generate a polar representation of
the Fourier transform of a discrete image.

2) The formulation of in (IV.9) uses continuous defi-
nitions of expectation and standard deviation, which need
to be discretized.

We define a discrete polar representation of the continuous
Fourier transform as

and choose the grid to be the pseudopolar grid, for which we
have an efficient numerical scheme. To define a discrete version
of (IV.9), we define the discrete expectation as

(V.1)

where is the number of samples of the form for
a fixed , such that . We define the standard deviation in
the discrete case as

(V.2)

Fig. 4. Estimating S (!). For real images, such as the Pentagon (a), using the
FFT to estimate S (!) results in a noisy estimate (b). The MUSIC spectrum
estimation scheme gives an accurate result (c).

The notation in the discrete case is the same as in the contin-
uous case. It is clear from the context which definition should
be used. In (V.1), we sum over the radial axis, and, therefore,
we are interested in discrete polar representations such that for
every there are roughly the same number of values such that

. We approximate (IV.9) by

(V.3)

where, in practice, is given by the PPFT of the input image.
In order to estimate the number of periods of , we com-

pute its spectrum, denoted , using nonparametric spec-
trum estimation [10]. If has periods over , then

has a maximum at . Since is defined over a
nonuniform abscissa of , given in (III.22), we resample it on
a uniform axis. Fig. 4(c) shows the spectrum estimate
of the Pentagon image computed by the MUSIC algorithm [10],
which estimates the frequency content by an eigenvalue decom-
position of the signal’s correlation matrix. The MUSIC algo-
rithm is particularly suitable for the analysis of signals that are
the sum of sinusoids and additive white Gaussian noise. Ap-
proximating by the magnitude of the FFT results in a
wrong estimate of the dominant frequency [Fig. 4(b)].

VI. EXPERIMENTAL RESULTS

The proposed approach was tested using real images with
noncentered symmetries. Color images were converted to
greyscale before being analyzed. The spectrum was
computed in all cases using a MUSIC algorithm without zero
padding. For each image we present [(V.3)
and (IV.6)], the spectrum used to recover the order of
symmetry, and the estimated axes and center of symmetry. For
reflectional symmetries, we show (IV.7) and describe
the computation of , the angle of one of the symmetry axes,
using (IV.8) and , where . In our imple-
mentation, we denote , and the true
angle in which that maximum is obtained is . This
is due to the angle ordering in the output array of the PPFT.

As natural objects often exhibit a low order of symmetry,
we start by analyzing images containing objects with low order
symmetries in Figs. 5 and 6. Both and contain
a single maximum corresponding to , which is detected
by the spectrum . Therefore, and the
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Fig. 5. Reflectional symmetry detection. (a) The symmetry axis is overlaid on the image. (b) The spectrum of the AC where the peak corresponds to a single
symmetry axis. (c)The AC ~E (�) has a single period. (d) The reflectional AC g (�) used to compute the symmetry axis’ angle. (Color version available
online at http://ieeexplore.ieee.org.)

Fig. 6. Reflectional symmetry detection. (a) The symmetry axis is overlaid on the image. (b) The spectrum of the AC. The peak corresponds to a single symmetry
axis. (c) The AC ~E (�). (d) The reflectional AC g (�) used to compute the angle � . (Color version available online at http://ieeexplore.ieee.org.)

Fig. 7. Analyzing a nonsymmetric image. (a) The “Peppers” image. (b) The spectrum of the AC. The peak corresponds to a single symmetry axis. (c) The AC
~E (�) shows the existence of a single registration solution, as an image can always be registered to a rotated replica of itself. Yet, g (�) in (d) does not have
a dominant maximum due to the lack of symmetry axes in the image. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 8. Reflectional symmetry detection. (a) The symmetry axis is overlaid on the image. (b) The spectrum of the AC. The peak corresponds to a single symmetry
axis, and by checking for N and 2N , we detect two symmetry axes. (c) The AC ~E (�). (d) The reflectional AC g (�) used to compute the symmetry axes’
angle. (Color version available online at http://ieeexplore.ieee.org.)

maximum of in Fig. 5(d) is detected at and
. Using (IV.8) we get cor-

responding to the vertical symmetry axis depicted in Fig. 5(a).
In Fig. 6(d), and we get .
The background in Fig. 6(a) is cluttered and we see that the max-
imum of in Fig. 6(d) is less evident than the one in
Fig. 5(d).

In contrast, Fig. 7 contains a nonsymmetric image and we get
from and . Yet, does not contain

any dominant maximum nor periodic patterns, and, hence, no
symmetry axes are detected. This is emphasized by comparing
Fig. 7(d) and (c). As we can always register an image to itself,
we expect to find a single period of in Fig. 7(c).

The analysis of images with higher orders of symmetry is pre-
sented in Figs. 8–10. In Fig. 8, the image and its background
are both symmetric and the symmetry axes are easily detected.

in Fig. 8(c) contains a single period and from
[Fig. 8(b)], we get . Next, we resolve the ambiguity of
having either or symmetry axes by rotating

the image by and verifying that it corre-
sponds to a solution of registering the image to itself. Similar to
Fig. 5, we get .

Fig. 9 is an example of rotational symmetry, which has a sym-
metry center but no symmetry axes. The spectrum shown in
Fig. 9(b) identifies the order of symmetry as , and by
rotating the image by both and ,
we get that the true order of symmetry is . The symmetry
center is recovered as described in Section IV-.D. Similar to the
results shown in Fig. 7, the periodic pattern is well observed in
Fig. 9(c) and less obvious in Fig. 9(d).

Another example is given in Fig. 10, where the object is em-
bedded in clutter. Perceptually, the Pentagon has a clear reflec-
tional symmetry of order five. However, by a close examina-
tion of the image, it follows that its symmetry is far from being
perfect. This problem is typical of real images and can be ef-
fectively addressed by the proposed scheme. Both and

in Fig. 10(c) and (d), respectively, have five periods,
which are accurately detected using . is computed
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Fig. 9. Rotational symmetry of order 6. (a) The symmetry center is accurately estimated. (b) The maximum of the spectrum corresponds to N = 3. By checking
for N and 2N , we detect six symmetry axes. (c) The AC ~E (�) has three periods. (d) The reflectional AC g (�) has no dominant maximum, as the image
is not reflectionally symmetric. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 10. Detecting reflectional symmetry of order five in a real image with noncentered and nonperfect symmetry. (a) The symmetry axes and center are accurately
detected. (b) The maximum of the spectrum corresponds to the number of symmetry axes. (c) The AC ~E (�) has five periods. (d) The reflectional AC g (�)
used to compute the symmetry axes’ angle also shows five periods. (e) The maximum of g (�) corresponds to the tilt angle of one of the symmetry axes. (Color
version available online at http://ieeexplore.ieee.org.)

Fig. 11. Detecting reflectional symmetry under occlusion. (a) The Pentagon is occluded by a patch. (b) The maximum of the spectrum corresponds to the number
of symmetry axes. (c) The AC ~E (�) has five periods. (d) g (�), used to compute the angle � ; also shows five periods. (e) g (�) differs from the one in
Fig. 10(e), causing our scheme to fail to locate the symmetry axes.

using , given by (IV.7) and shown in Fig. 10(e), where
the maximum is detected at and .
As is odd , we verify whether the rotation is either or

and the true rotation turns to be the latter. Hence, the
correct solution in this case is not but
and which corresponds to one of the
symmetry axes.

The robustness of our scheme was further tested by analyzing
the partially occluded Pentagon image in Fig. 11(a), where a
patch from the background of Fig. 9 was overlaid on the Pent-
agon image. The robustness of the MUSIC approach used for
symmetry order estimation is exemplified in Fig. 9(b), where we
accurately estimate the number of symmetry axes . We
used a 2-D MUSIC scheme which provides better results than
the four-dimensional scheme used in Fig. 10. Yet, our scheme
failed to accurately estimate as two peaks can be identified in

in Fig. 11(e). The highest peak results in which
does not correspond to any of the symmetry axes. The second
peak, which is located at , corresponds to the cor-
rect tilt angle of the occlusion-free case (Fig. 10). We conclude
that the symmetry order estimation step of our scheme (using
MUSIC) is more robust than the localization of the symmetry
axes.

The proposed scheme was implemented in C++ and the com-
putational time is about 20 s for a 256 256 image using a
2.8-GHz Pentium running WinXP. Profiling shows that 90%
of the running time is related to the computation of the PPFT,

whose implementation is currently not optimized. When prop-
erly implemented, the PPFT is slower than the 2-D FFT by only
a small constant.

VII. CONCLUSION

We presented a 2-D symmetry detection algorithm which
detects both rotational and reflectional symmetries. Our ap-
proach operates in the frequency domain by reformulating
the symmetry detection as the analysis of a periodic signal
embedded in noise, which is a classical signal processing
problem with known and effective solutions. This formulation
is based on computing the AC using the PPFT. It is shown to be
algebraically accurate and effective in recovering both centered
and noncentered symmetries.
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